

Lighting and Device Schedule

| Device | Description | Manufacturer
 Part Number | Size | Qty | Power ea (watts) |
| :---: | :---: | :---: | :---: | :---: | :---: | Budgeted Power (Watts)

Notes: (Note briefly what you immediately notice about this design)

Sequence of Operations:

- 4 button switch:
a) Top button shall increase the brightness of all fixtures by 20%
b) Second button shall decrease the brightness of all fixtures by 20%
c) Third button shall increase the color temperature by 20%
d) Fourth button shall decrease the color temperature by 20%
- Motion Detector:
a) When the space is occupied, the occupant must turn on the lights manually
b) 20 minutes after the space is unoccupied, lights shall dim to 30% of maximum
c) 30 minutes after the space is unoccupied the lights shall turn off
- Customized Wallcontroller

1) Shall be able to operate 4" downlights as a group
2) Shall be able to operate 4' pendant light levels independently
3) Shall be able to produce an alarm

Notes: (Note briefly what you immediately notice about this design)

Steps:

How many LINCs will you need for this space? Please mark how many LINCs are needed for this space by drawing them in

Mark where you will install the LINCs (you can choose server room) then draw onelines for how you will run the wiring

Considerations:

- LINCs have four inputs and four outputs
- LINCs have a total power budget of 80 watts

Steps:

Based on the drawings what other devices are in the system besides the lights and light switch? Which ones are PoE?

Considerations:

At a minimum each deployment must have a COR-TAP controller
The 10" wall controller is Power Over Ethernet

The " M " device is a motion detector with a 0-10 volt range

Lighting and Device Schedule

| Device | Description | Manufacturer
 Part Number | Size | Qty | Power ea (watts) |
| :---: | :---: | :---: | :---: | :---: | :---: | Budgeted Power (Watts)

Device				Controls		
Room	Type	Size	Power(max)	Node Name	Output or Input	MAC address (last 4)
100	A	$4^{\prime \prime}$	10	F100A_1_2	$1 _2$	00:AC
100	A	$4^{\prime \prime}$	10	F100A_3_4	$3 _4$	00:AC
100						
100	A	$4^{\prime \prime}$	10	F100_3_4	$3 _4$	
100	B	4^{\prime}	40	F100B_1	1	00:A1
100	C		3	S100C_1	1	00:AC
100	D	$10 "$	12	WS100	N/A	N/A
100	E		3	SW100D_1_2_3_4	$1 _2 _3 _4$	
100			12	COR-TAP-29		

Steps:

Complete the PoE Schedule by adding a fixture A to row 3 and adding the MAC address from your kit in the $3 x$ blank MAC address fields

Considerations:

You want to identify each device and how much power it draws so you can create a power schedule for your networking hardware

You are also starting to use labeling. Either match the device labeling scheme provided by the owner or you can use ours developed over many projects:

- SW - Light switch
- M - Motion detector

F [Type of Device] 100 [Room number] A [Device schedule] _1_2 [Channels] 00:AC [Last 4 MAC]

- WS - Wallstation
- S - Sensor (Various)

Device			Controls			
Room	Type	Size	Power(max)	Node Name	Output	MAC address (last 4)
100	A	$4^{\prime \prime}$	10	F100A_1_2	$1 _2$	00:AC
100	A	$4^{\prime \prime}$	10	F100A_3_4	$3 _4$	00:AC
100						
100	A	$4^{\prime \prime}$	10	F100_3_4	$3 _4$	
100	B	4^{\prime}	40	F100B_1	1	00:A1
100	C		3	S100C_1	1	00:AC
100	D	$10 "$	12	WS100	N/A	N/A
100	E		3	SW100D_1_2_3_4	$1 _2 _3 _4$	

PSE Total Power Schedule

PSE	PSE Power Budget	Total power (kW)
GBTS-28-24-M_1_1	$2,160 \mathrm{~W}$	104 W

PSE Power Schedule by Port

Node	Power (W)	Mfg	PSE Port
F100A_00:AC	20	DENT	GBTS-28-24-M_1_1
F100B_00:A1	40	DENT	GBTS-28-24-M_1_3
WS100	12	DENT	GBTS-28-24-M_1_4
COR-TAP	12	DENT	GBTS-28-24-M_1_5

Steps:

Translate the PoE Device Schedule from the previous page
into a Port and Switch Schedule - Add the LINC from your lab kit to the
PSE Power Schedule by Port

Considerations:

Make sure to identify the power you need

What lights need to be on their own switch for emergency lighting?
How you will label the switches? Has the owner provided a schema?

October 26, 2022 TITLE:

POWER SCHEDULE dRAWING NUMBER:

DENT-LTG-DWN

Features

- CREE LED, high lumen
- $26 \mathrm{~mm}\left(\sim 1^{\prime \prime}\right)$ thin profile
- $900+$ Lumens
- UGR<19
- Several lensing options
- 90+ CRI

10W @ 901m/W

- Constant Current: 200mA, 36-42VDC
- $2700 \mathrm{~K}-5000 \mathrm{~K}$ selectable via software

Beam Angle 38°

- Weam Angle
- Operating Temp $-10^{\circ}-40^{\circ} \mathrm{C}$

Operating Temp $-10^{\circ}-40^{\circ} \mathrm{C}$
Dimming in 0.4% increments

4" Style Options (DENT-LTG-DWN-4-<shape>-<color>

Shape>	Description
-RDF-	Round Flat
-RDG-	Round Gimbal
-SQF-	Square Flat
-SQG-	Square Gimbal

512-479-0317

Since 2011 poetexas.com POCS

Steps:

Mark the submittals as how you would submit them to the client. On DENT-LTG-DWN, circle the color that matches the color of the fixture in your lab kit.

Considerations:

Identify selections of color, length, power, type. The better you identify them now the less risk you have later.

